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a b s t r a c t

In this paper, the dynamical behaviors of an SEIR epidemic system governed by differential
and algebraic equations with seasonal forcing in transmission rate are studied. The cases
of only one varying parameter, two varying parameters and three varying parameters are
considered to analyze the dynamical behaviors of the system. For the case of one varying
parameter, the periodic, chaotic and hyperchaotic dynamical behaviors are investigated via
the bifurcation diagrams, Lyapunov exponent spectrum diagram and Poincare section. For
the cases of two and three varying parameters, a Lyapunov diagram is applied. A tracking
controller is designed to eliminate the hyperchaotic dynamical behavior of the system,
such that the disease gradually disappears. In particular, the stability and bifurcation of the
system for the case which is the degree of seasonality β1 = 0 are considered. Then taking
isolation control, the aim of elimination of the disease can be reached. Finally, numerical
simulations are given to illustrate the validity of the proposed results.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Mathematical models describing the population dynamics of infectious diseases have been playing an important role
in a better understanding of epidemiological patterns and disease control for a long time. In order to predict the spread
of infectious disease among regions, many epidemic models have been proposed and analyzed in recent years (see [1–4]).
However,most of the literature researched on epidemic systems (see [5–8]) assumes that the disease incubation is negligible
which causes that, once infected, each susceptible individual (in class S) becomes infectious instantaneously (in class I) and
later recovers (in class R) with a permanent or temporary acquired immunity. The model based on these assumptions is
customarily called an SIR (susceptible-infectious-recovered) or SIRS (susceptible- infectious-recovered-susceptible) system
(see [9,10]). Many diseases such as measles, severe acute respiratory syndromes (SARS) and so on, however, incubate inside
the hosts for a period of time before the hosts become infectious. So the systems that are more general than SIR or SIRS
types need to be studied to investigate the role of incubation in disease transmission. We may assume that a susceptible
individual first goes through a latent period (and said to become exposed or in the class E) after infection before becoming
infectious. Thus the resultingmodels are of SEIR (susceptible- exposed-infectious-recovered) or SEIRS (susceptible-exposed-
infectious-recovered-susceptible) types, respectively, depending on whether the acquired immunity is permanent or not.
Many researchers have studied the stability, bifurcation or chaos behavior of SEIR or SEIRS epidemic systems (see [11–16]).
Michael et al. [11] study the global stability of an SEIR epidemic system in the interior of the feasible region. Greenhalgh [17]
discusses Hopf bifurcation in models of SEIRS type with density dependent contact and death rates. In addition, some
literature on the SEIR-type age-independent epidemic systems has been investigated by many authors (see [15,17,18]) and
their threshold theorems are well obtained.
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Many authors find that most practical systems are more exactly described by differential and algebraic equations, which
appear in engineering systems such as power systems, aerospace engineering, biological systems, economic systems, etc.
(see [19–22]). Although many epidemic systems can be described by differential and algebraic equations (see [2,13,16,23]),
they are studied by reducing the dimension of epidemic models to differential systems and the dynamical behaviors of the
whole systems are not better described. By reducing the dimension of an SEIR epidemic system via substituted algebraic
constraint into differential equations and using the methods of reconstructed phase and correlation dimension, Olsen and
Schaffer [13] studied the system described by differential equations that is chaos with a degree of seasonality β1 = 0.28.
However, we can find more complex dynamical behaviors if the SEIR epidemic system is described by differential and
algebraic equations via an analysis of thewhole system. The systemic parameters in this paper are same as [13]. In particular,
the system is hyperchaotic when systemic parameter β1 = 0.28 in this paper. Some authors study biologic systems based
on seasonal forcing. Kamo and Sasaki [24] discuss dynamical behaviors of a multi-strain SIR epidemiological model with
seasonal forcing in the transmission rate. Broer et al. [25] studied the dynamics of a predator-prey model with seasonal
forcing.
Differential and algebraic systems are also referred as descriptor systems, singular systems, generalized state space

systems, etc. Differential and algebraic systems are governed by the so-called singular differential equations, which endow
the systems with many special features that are not found in classical systems. Among these are impulse terms and input
derivatives in the state response, nonproperness of transfer matrix, noncausality between input and state (or output),
consistent initial conditions, etc. Research on nonlinear differential and algebraic systems has focused on systems with
the following description:

Ξ(t)ẋ(t) = H(x(t), u(t), t)
y(t) = J(x(t), u(t), t)

(1.1)

where Ξ(t) ∈ Rn × Rn is singular; H and J are appropriate dimensional vector functions in x(t), u(t) and t; x(t), u(t) and
y(t) are the appropriate dimensional state, and input and output vectors, respectively; t is a time variable. In particular, the
systems (1.1) are normal systems if rank[Ξ(t)] = n. Some authors have discussed chaotic dynamical behavior and chaotic
control based on differential and algebraic systems. Zhang et al. [26,27] discuss chaos and their control of singular biological
economy systems by the theory of differential and algebraic systems.
The literature mentioned above is concerned about low-dimensional chaotic systems with one positive Lyapunov

exponent. The attractor of chaotic systems that may have two or more positive Lyapunov exponents is called hyperchaos.
However, many researchers have investigated hyperchaotic systems which are the classical hyperchaotic systems, such as
hyperchaotic Chen systems, hyperchaotic Rossler systems, hyperchaotic Lorenz systems and so on (see [28–31]). They are
all based on hyperchaos synchronization and hyperchaos control. Up to now, awide variety of approaches have been used to
control hyperchaotic systems, for example, the sliding mode control, state feedback control, adaptive control and tracking
control, etc. (see [32–35]). However, no literature discusses hyperchaos and its control based on differential and algebraic
systems.
To the best of our knowledge, hyperchaos appears first in differential and algebraic systems based on this paper. The

contribution of this paper can be divided into three main parts. In the first part, an SEIR epidemic system with seasonal
forcing in transmission rate, which is a new form of differential and algebraic system, is modeled. We discuss the cases
of only one varying parameter, two varying parameters and three varying parameters, respectively. For the case of one
varying parameter, the periodic, chaotic andhyperchaotic dynamical behaviors of the systemare analyzed via the bifurcation
diagrams, Lyapunov exponent spectrum diagram and Poincare section. For the cases of two and three varying parameters,
the dynamical behaviors of the system are investigated by using Lyapunov diagrams. In the second part, for the hyperchaotic
dynamical behavior of the system, we design a tracking controller such that the infectious trajectory of the system tracks
an ideal state id(t) = 0. In the last part, the case for the degree of seasonality β1 = 0 is studied. Taking isolation control, we
reach the aim of elimination of the disease, and it is easy to implement in real life.
This paper is organized as follows. In Section 2, some preliminaries for the differential and algebraic systems are

introduced and the SEIR model is described by differential and algebraic equations. In Section 3, the dynamical behaviors of
the model are analyzed and a tracking controller is designed for the hyperchaotic system, such that the infected gradually
disappears. In particular, the case for the degree of seasonality β1 = 0 is studied. Taking isolation control, the aim of
elimination of the disease can be reached. Simulation results are presented to demonstrate the validity of the controller.
Some concluding remarks are given in Section 4.

2. Preliminaries and description of the model

In this section, we describe the SEIR epidemic model and introduce some correlative definitions about differential and
algebraic systems.
We describe an SEIR epidemic model with nonlinear transmission rate as follows. The population of size N(t) is divided

into classes containing susceptible, exposed (infected but not yet infectious), infectious and recovered. At time t , there are
S(t) susceptible, E(t) exposed, I(t) infectious, and R(t) recovered. The host total population isN(t) = S(t)+E(t)+I(t)+R(t)
at time t . And we assume that immunity is permanent and that recovered individuals do not revert to the susceptible class.
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Fig. 1. The dynamical transfer of the population N .

It is assumed that all newborns are susceptible (no vertical transmission) and a uniform birthrate. The dynamical transfer
of the population is depicted in Fig. 1.
The parameter b > 0 is the rate for natural birth and d > 0 is the rate for natural death. The parameter α > 0 is the rate

at which the exposed individuals become infective, so 1/α means the latent period and γ > 0 is the rate for recovery. The
force of infection is βIN , where β > 0 is effective per capita contact rate of infective individuals and the incidence rate is

βIS
N .

The following differential and algebraic system is derived based on the basic assumptions and using the transfer diagram

Ṡ(t) = bN(t)− dS(t)− β
S(t)I(t)
N(t)

Ė(t) = β
S(t)I(t)
N(t)

− (α + d)E(t)

İ(t) = αE(t)− (γ + d)I(t)

Ṙ(t) = γ I(t)− dR(t)
0 = S(t)+ E(t)+ I(t)+ R(t)− N(t).

(2.1)

Remark 1. The system (2.1) is a classical epidemiological one (see [2]) when the population size N(t) is assumed to be a
constant and normalized to 1.

Remark 2. The rate of removal α of individuals from the exposed class is assumed to be a constant so that 1/α can be
regarded as themean latent period. In the limiting case, when α→∞, the latent period 1/α→ 0, the SEIRmodel becomes
an SIR model (see [24]).

From the first to fourth differential equations of system (2.1) describe the dynamical behaviors of every dynamic element
forwhole epidemic system (2.1) and the last algebraic equation describes the restriction of every dynamic element of system
(2.1). That is, the differential and algebraic system (2.1) can describe the whole behavior of certain epidemic spreads in a
certain area.
We consider the transmission rate with seasonal forcing in this paper as follows:

β = β0(1+ β1 cos 2π t)

where β0 is the base transmission rate, and β1(0 ≤ β1 ≤ 1)measures the degree of seasonality.
We make the transformation

s =
S
N
, e =

E
N
, i =

I
N
and r =

R
N

to obtain the following differential and algebraic system:

s′ = b− bs− βsi

e′ = βsi− (α + b)e

i′ = αe− (γ + b)i

r ′ = γ i− br
0 = s+ e+ i+ r − 1

(2.2)

where s, e, i, r denote the proportions of susceptible, exposed, infectious and recovered, respectively. Note that the total
population size N does not appear in system (2.2), this is a direct result of the homogeneity of the system (2.1). Also observe
that the variable r is described by differential equation r ′ = γ i − br as well as algebraic equation r = 1 − s − e − i, but
there is no the variable r in the first to third equations of the system (2.2). This allows us to attack system (2.2) by studying
the subsystem

s′ = b− bs− βsi

e′ = βsi− (α + b)e

i′ = αe− (γ + b)i
0 = s+ e+ i+ r − 1.

(2.3)



N. Yi et al. / Mathematical and Computer Modelling 50 (2009) 1498–1513 1501

System (2.3) is also a differential and algebraic system. The dynamical transfer of the epidemic model such as measles,
smallpox, chicken-pox etc. accords with the description of system (2.3).
From biological considerations, we study system (2.3) in the closed set:
Γ =

{
(s, e, i, r) ∈ R4

+
|s+ e+ i+ r = 1

}
,

where R4
+
denotes the non-negative cone of R4.

We introduce some definitions that are used in this paper as follows.
We consider the following differential and algebraic system [22]:

Ẋ(t) = f (X(t), Y (t))+ g(X(t), Y (t))u(t)
0 = p(X(t), Y (t))

(2.4)

where X(t) = (X1(t), X2(t), . . . , Xn(t))T, Y (t) = (Y1(t), Y2(t), . . . , Ym(t))T and u ∈ R are the n dimensional state variable,
m dimensional constraint variable and control input, respectively. f : Rn × Rm → Rn; g : Rn × Rm → Rn and
p : Rn × Rm → Rn are smooth vector fields, and

rank
(
∂p(X, Y )
∂Y

)
= m, ∀(X(t), Y (t)) ∈ Ω ⊂ Rn × Rm,

Ω is an open connectible set.

Definition 1 (M derivative [36]). Mf (q(X(t), Y (t))) and Mg(q(X(t), Y (t))) are said to be the derivatives of M about vector
fields f and g at the function q(X(t), Y (t)), respectively, if the following equations

Mf (q(X(t), Y (t))) = ϕ(q(X(t), Y (t)))f and
Mg(q(X(t), Y (t))) = ϕ(q(X(t), Y (t)))g,

hold, where

φ(q(X(t), Y (t))) =
∂q
∂X(t)

−
∂q
∂Y (t)

(
∂p
∂Y (t)

)−1
∂p
∂X(t)

.

Definition 2 (Relative degree [36]). Assume that the output function of system (2.4) is h(X(t), Y (t)), when (X(t), Y (t)) ∈
Ω ⊂ Rn × Rm, there exists a positive integer θ which is called the relative degree if the following conditions are satisfied:

MgMkf h(X(t), Y (t)) ≡ 0, k = 0, . . . , θ − 2;

MgMθ−1
f h(X(t), Y (t)) 6= 0.

3. Main results

3.1. Analysis of dynamical behaviors

In this subsection, we not only consider the case of only one varying parameter β1, but also discuss the cases of two
and three varying parameters. For the case of only one varying parameter β1, the dynamical behaviors of system (2.3) are
analyzed by using the bifurcation diagrams, Lyapunov exponent spectrum diagram and Poincare section. In particular, there
is hyperchaotic dynamical behavior for system (2.3) with β1 = 0.28, i.e., system (2.3) has two positive Lyapunov exponents.
For the cases of two and three varying parameters, the dynamical behaviors of system (2.3) are analyzed by using Lyapunov
diagrams.

3.1.1. Only one varying parameter
Let β1 be a varying parameter of system (2.3), and the rest of the parameters are b = 0.02, α = 35.84, γ = 100 and

β0 = 1800, respectively (see [13]). The bifurcation diagrams of systemic parameter β1 and every variable of system (2.3)
using Matlab7.1 software are shown in Fig. 2. From Figs. 2. (a), (b), (c) and (d), we can easily see that there are complicated
dynamical behaviors for system (2.3) with parameter β1 in some areas. The corresponding Lyapunov exponent spectrum
diagram is given in Fig. 3. Figs. 2, and 3 show how the dynamics of system (2.3) change with the increasing value of the
parameterβ1.We can observe that the Lyapunov exponent spectrumgives results completely consistentwith the bifurcation
diagram. In particular, Fig. 3c shows that there are two positive Lyapunov exponents with the parameter β1 = 0.28,
i.e., system (2.3) with β1 = 0.28 is hyperchaotic.
Assume that λj (j = 1, 2, 3, 4, 5) are Lyapunov exponents of system (2.3), satisfying the condition λ1 ≥ λ2 ≥ λ3 ≥ λ4 ≥

λ5. The dynamical behaviors of system (2.3) based on the Lyapunov exponents are given in Table 1.
Hyperchaotic dynamical behavior is analyzed via phase plots as follows. The projection of a hyperchaotic attractor on

phase plan of system (2.3) with β1 = 0.28 is given in Fig. 4.
The hyperchaotic attractor of system (2.3) with β1 = 0.28 is shown in Fig. 5.(a), (b), (c) and (d). The Poincare section of

system (2.3) with β1 = 0.28 is given in Fig. 6.
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Fig. 2. Bifurcation diagrams of parameter β1(0 ≤ β1 ≤ 1) and every variable of system (2.3). (a) β1 − s(t); (b) β1 − e(t); (c) β1 − i(t); (d) β1 − r(t).
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Table 1
Attractor type of system (2.3) based on the Lyapunov exponents.

Lyapunov exponents Attractor type

λ1 > 0, λ2 > 0, λ3 = 0, λ4 < 0, λ5 < 0 Hyperchaotic attractor
λ1 > 0, λ2 = 0, λ3 < 0, λ4 < 0, λ5 < 0 Chaotic attractor
λ1 = 0, λ2 < 0, λ3 < 0, λ4 < 0, λ5 < 0 Period attractor
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e–r .

3.1.2. Two and three varying parameter
It is well known that systemic parameters vary in many practical problems. In this subsection, we consider the cases

of two and three varying parameters. Broer et al. [37,38] introduce an algorithm on Lyapunov diagram and the diagram is
used to scan the parameter plan. To observe clearly the dynamical behaviors, Lyapunov diagrams Figs. 7 and 8. are applied
in our paper. A Lyapunov diagram is a plot of a two-parameter plane, where each color corresponds to one type of attractor,
classified on the basis of Lyapunov exponents λ1 ≥ λ2 ≥ λ3 ≥ λ4 ≥ λ5, according to the color code in Table 2.
For the case of two varying parameters, we discuss three sub-cases as follows.
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Table 2
Legend of the color coding for Figs. 7 and 8: the attractors are classified by means of Lyapunov exponents (λ1, λ2, λ3, λ4, λ5).

Colour Lyapunov exponents Attractor type

Red λ1 ≥ λ2 > λ3 = 0 > λ4 ≥ λ5 Hyperchaotic attractor
Green λ1 > λ2 = 0 > λ3 ≥ λ4 ≥ λ5 Chaotic attractor
Blue λ1 = 0 > λ2 ≥ λ3 ≥ λ4 ≥ λ5 Period attractor
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(1) Fixing b = 0.02, β0 = 1800 and γ = 100, let the parameter β1 and α be varying parameters. Taking β1 ∈ [0, 1] and
α ∈ [34, 36], the Lyapunov diagram is given in Fig. 7(a).

(2) Fixing b = 0.02, β0 = 1800 and α = 35.84, let the parameter β1 and γ be varying parameters. Taking β1 ∈ [0, 1] and
γ ∈ [90, 110], the Lyapunov diagram is shown in Fig. 7(b).

(3) Fixing b = 0.02, β0 = 1800 and β1 = 0.28, let the parameter α and γ be varying parameters. Taking α ∈ [34, 36] and
γ ∈ [90, 110], the Lyapunov diagram is given in Fig. 7(c).

For the case of three varying parameters, fixing the parameter b = 0.02,β0 = 1800 and takingβ1 ∈ [0, 1],α ∈ [35.5, 36]
and γ ∈ [96, 104], the Lyapunov diagram is shown in Fig. 8.
According to the above-mentioned analysis, we know that system (2.3) has very complicated dynamical behaviors, such

as period, chaos and hyperchaos phenomena with some parameter values, respectively.
Hyperchaotic dynamical behavior is similar to chaotic dynamical behavior, and multi-stability coexists in a system.

A hyperchaotic attractor has a multi-direction adjacent orbit exponent divergent characteristic, as well as the complex
characteristic of a high tangle orbit. From Figs. 4–6, the hyperchaotic attractor has not only the general characteristic of
a low dimension chaotic attractor, but also has the following speciality: hyperchaotic systems have shrinkable or radiation
behavior at least on a plane or loop plane. Hereby, the projections of hyperchaotic attractor on a phase plane are of more
complicated fold and tensible trajectories. It is shown that the instability in local region of hyperchaotic systems is stronger
than in low dimension chaotic systems. Hence, the control difficulty of hyperchaotic systems is increased.
The biologic signification of hyperchaos in epidemic models is that, the epidemic disease will break out suddenly and

spread gradually in a region at the period of the high incidence of the epidemic disease. This means that many people in
the region will be infected by disease, and some of them could even lose their lives. Nevertheless, there exists an uncertain
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prediction for the low period of the incidence of the epidemic disease. Therefore, it is important to control the hyperchaos
of the epidemic model.

3.2. Hyperchaos control

In this subsection, we will control the hyperchaos for system (2.3) and design a tracking controller u(t) so that i(t)→ 0
when t →∞. That is, the disease gradually disappears and our aim is reached.
It is well known that there are three conditions for epidemic transmission, i.e., sources of infection, route of transmission

and a susceptible population. If we understand rightly the rule of the epidemic process of epidemic disease, take timely
valid measures and prevent any one of the three conditions from being produced, the transmission of epidemic disease can
be prevented. Therefore, we can reach the aim of controlling and eliminating epidemic disease. The susceptible, the body
for certain diseases that is lower or has a lack of immunity, cannot resist the invasion of certain pathogens. The higher the
percentage of the susceptible is, the larger is the possibility of disease outbreaks. Therefore, it is important to control the
susceptible and it is easy to implement this measure.
The new controlled system has the form of

s′(t) = b(1− s(t))− β0(1+ β1 cos 2π t)s(t)i(t)+ u(t)

e′(t) = β0(1+ β1 cos 2π t)s(t)i(t)− (α + b)e(t)

i′(t) = αe(t)− (γ + b)i(t)
0 = s(t)+ e(t)+ i(t)+ r(t)− 1.

(3.1)

To simplify, we take the transformation x(t) = 2π t , the nonautonomy system (3.1) is equivalent to the following
autonomy system:

s′(t) = b(1− s(t))− β0(1+ β1 cos x(t))s(t)i(t)+ u(t)

e′(t) = β0(1+ β1 cos x(t))s(t)i(t)− (α + b)e(t)

i′(t) = αe(t)− (γ + b)i(t)

x′(t) = 2π
0 = s(t)+ e(t)+ i(t)+ r(t)− 1.

(3.2)

System (3.2) can be written as the standard form of system (2.4). So let X(t) = (s(t), e(t), i(t), x(t))T, Y (t) = r(t),

f (X(t), Y (t)) =

b(1− s(t))− β0(1+ β1 cos x(t))s(t)i(t)β0(1+ β1 cos x(t))s(t)i(t)− (α + b)e(t)
αe(t)− (γ + b)i(t)

2π

 , g(X(t), Y (t)) =

100
0

 ,
p(X(t), Y (t)) = s(t)+ e(t)+ i(t)+ r(t)− 1.

According to the definition ofM derivative, take the output h(X(t), Y (t)) = i(t) of system (3.2), and we obtain

MgM0f h(X(t), Y (t)) = MgM
0
f i(t) = 0,

MgMf h(X(t), Y (t)) = 0,

MgM2f h(X(t), Y (t)) = αβ0(1+ β1 cos x(t))i(t) 6= 0.

It shows that the relative degree is 3.
Take the following coordinate transformation,

ξ1(t) = i(t),
ξ2(t) = αe(t)− (γ + b)i(t),

ξ3(t) = αβ0(1+ β1 cos x(t))s(t)i(t)− α(α + 2b+ γ )e(t)+ (γ + b)2i(t),
x(t) = 2π t.

(3.3)

We can get the following standard form:

ξ̇1(t) = ξ2(t)

ξ̇2(t) = ξ3(t)

ξ̇3(t) = ῡ(t)
ẋ(t) = 2π

0 =
α + γ + b

α
ξ1(t)+

1
α
ξ2(t)+ σ(t)+ r(t)− 1

(3.4)
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where

σ(t) =
1

αβ0(1+ β1 cos x(t))ξ1(t)
[(α + b)(γ + b)ξ1(t)+ (α + 2b+ γ )ξ2(t)+ ξ3(t)] ,

ῡ(t) =
[
ξ2(t)
ξ1(t)

+
2πβ1 sin x(t)
1+ β1 cos x(t)

− β0(1+ β1 cos x(t))ξ1(t)
]

× [(α + b)(γ + b)ξ1(t)+ (α + 2b+ γ )ξ2(t)+ ξ3(t)]
+ b [αβ0(1+ β1 cos x(t))− 2(α + b)(γ + b)] ξ1(t)
+ [γ + b− (γ + 2b)(α + 2b+ γ )] ξ2(t)− (α + 3b+ γ )ξ3(t)
+αβ0(1+ β1 cos x(t))ξ1(t)u(t).

Obviously, it shows that the differential equations of system (3.2) are divided into a linear subsystem of input–output
behavior (that is from the first to third differential equations of system (3.4)), where the dimension is 3 and the other
subsystem with dimension 1 (that is the fourth differential equation of system (3.4)), but this subsystem does not affect
the output of system (3.2). In order to research the output tracking of system (3.2), we only consider from the first to third
differential equations of system (3.4) and the algebraic restrict equation. Our aim is that the output trajectory of system (3.2)
tracks an ideal state id(t) = 0, this means the disease gradually disappears.

Theorem 3.1. The controller of controlled system (3.2) is

u(t) =
1

αβ0(1+ β1 cos 2π t)i(t)
[−Z(s(t), e(t), i(t))+ υ(t)] (3.5)

where
Z(s(t), e(t), i(t)) = αβ0(1+ β1 cos 2π t)i(t)[b− (α + 4b+ 2γ )s(t)− β0(1+ β1 cos 2π t)s(t)i(t)]

+αe(t)[αβ0(1+ β1 cos 2π t)s(t)+ (α + b)(α + 2b+ γ )+ (γ + b)2]
− (γ + b)3i(t)− 2παβ0β1s(t)i(t) sin 2π t,

υ(t) = −c0i(t)− c1[αe(t)− (γ + b)i(t)]
− c2[αβ0(1+ β1 cos 2π t)s(t)i(t)− α(α + 2b+ γ )e(t)+ (γ + b)2i(t)],

where the constants c0, c1, c2 satisfy that all roots of equation p3 + c2p2 + c1p+ c0 = 0 lie the left half plane of p, the output of
system (3.2) h(X(t), Y (t)) = i(t)→ 0 when t →∞.

Proof. Let the error variable ω(t) = (ω1(t), ω2(t), ω3(t))T ∈ R3,

ω(t) = ξ(t)− ξd(t),

where ξ(t) = (ξ1(t), ξ2(t), ξ3(t))T, ξd(t) = (ξ1d(t), ξ2d(t), ξ3d(t))T = (id(t), i′d(t), i
′′

d(t))
T.

We can get the following error system:

ω̇1(t) = ω2(t)
ω̇2(t) = ω3(t)
ω̇3(t) = ῡ(t)
ẋ(t) = 2π

0 =
α + γ + b

α
ω1(t)+

1
α
ω2(t)+ θ(t)+ r(t)− 1

(3.6)

where θ(t) = 1
αβ0(1+β1 cos x(t))ω1(t)

[(α + b)(γ + b)ω1(t)+ (α + 2b+ γ )ω2(t)+ ω3(t)] ,
Substituting (3.3) and (3.5) into (3.6), we can obtain the following subsystem:

ω̇1(t) = ω2(t)
ω̇2(t) = ω3(t)
ω̇3(t) = υ(t)

(3.7)

where υ = −c0ω1(t)− c1ω2(t)− c2ω3(t), according to the theory of [39], choose appropriate constants c0, c1, c2 satisfying
all roots of equation p3 + c2p2 + c1p + c0 = 0 that lie in the left half plane of p, thus subsystem (3.7) after feedback is an
asymptotically stable system. That is ω(t) → 0 when t → ∞, thus i(t) → 0 when t → ∞, that means the output of
system tracking ideal trajectory is id(t) = 0. This completes the proof. �

Remark 3. There is important practical significance of the control for the susceptible in Theorem 3.1. First, we can be
vaccinated for the susceptible and enhance immunity by taking exercise. Second, it is necessary to decrease contact with
the infectious.
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3.3. Case β1 = 0

In this subsection, we discuss the stabilities of trivial equilibria and nontrivial equilibria for system (2.3) with β1 = 0,
respectively.We further study the bifurcation of the system and design a isolation control such that the disease is eliminated
gradually.
The system (2.3) with β1 = 0 can be written

s′ = b− bs− β0si

e′ = β0si− (α + b)e

i′ = αe− (γ + b)i
0 = s+ e+ i+ r − 1.

(3.8)

To obtain the equilibria of system (3.8), let

b− bs− β0si = 0,
β0si− (α + b)e = 0,
αe− (γ + b)i = 0,
s+ e+ i+ r − 1 = 0.

We get the disease-free equilibrium P0(1, 0, 0, 0) and the endemic equilibrium P1(s∗, e∗, i∗, r∗), where s∗ = b
b+β0 i∗

,

e∗ = γ+b
α
i∗, i∗ = αb

(α+b)(γ+b) −
b
β0
, r∗ = b

γ
i∗.

For simplicity, let f (X1, Y1, β0) =
[
b− bs− β0si
β0si− (α + b)e
αe− (γ + b)i

]
, g(X1, Y1, β0) = s+ e+ i+ r − 1,

where X1 = [s, e, i]T, Y1 = r and β0 is a bifurcation parameter of system (3.8). Since DY1g = 1 6= 0, we can get

Σ = DX1 f − DY1 f (DY1g)
−1DX1g =

[
−b− β0i 0 −β0s
β0i −(α + b) β0s
0 α −(γ + b)

]
.

The following theorem shows the stability of disease-free equilibrium P0(1, 0, 0, 0).

Theorem 3.2. The disease-free equilibrium P0(1, 0, 0, 0) of system (3.8) is globally asymptotically stable in Γ if β0 < β∗0 ; it is
unstable if β0 > β∗0 , where β

∗

0 =
(α+b)(γ+b)

α
.

Proof. The Jacobian matrix of system (3.8) at the equilibrium P0 is

ΣP0 =

[
−b 0 −β0
0 −(α + b) β0
0 α −(γ + b)

]
and we can get the characteristic equation ofΣP0 ,∣∣λΥ −ΣP0 ∣∣ = (λ+ b) [λ2 + (α + γ + 2b)λ+ (α + b)(γ + b)− αβ0] = 0
where Υ is a unit matrix.
We can see that one of the eigenvalues is−b and the other two are the roots of

λ2 + (α + γ + 2b)λ+ (α + b)(γ + b)− αβ0 = 0.

If β0 < β∗0 , all three eigenvalues have negative real parts and the equilibrium P0 is locally asymptotically stable. If
β0 > β∗0 , the nontrivial equilibrium emerges and the trivial equilibrium P0 becomes unstable. There are positive real parts
of two eigenvalues. The equilibrium P0 is unstable. This completes the proof. �

Theorem 3.3. If β0 > β∗0 , the equilibrium P1 of system (3.8) is locally asymptotically stable; if β0 < β∗0 , P1 is unstable.

Proof. The Jacobian matrix of system (3.8) at P1

ΣP1 =

−b− β0i∗ 0 −β0s∗

β0i∗ −(α + b) β0s∗

0 α −(γ + b)

 .
The characteristic equation ofΣP1 is∣∣λΥ −ΣP1 ∣∣ = λ3 + C1λ2 + C2λ+ C3 = 0
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where

C1 = α + γ + 2b+
αbβ0

(α + b)(γ + b)
,

C2 =
αbβ0

(α + b)(γ + b)
(α + γ + 2b),

C3 = b [αβ0 − (α + b)(γ + b)] ,

when β0 > β∗0 , the conditions of the Routh–Hurwitz criterion are satisfied. Then, the equilibrium P1 is locally asymptotically
stable. When β0 < β∗0 , there exists one or three positive eigenvalues. The equilibrium P1 is unstable. This completes the
proof. �

Remark 4. According to Theorems 3.2 and 3.3, we note that if β0 < β∗0 , the system (3.8) is stable at the equilibrium P0,
which corresponds to the disappearance of the disease. If β0 > β∗0 , the system (3.8) is stable at the equilibrium P1 which
the endemic disease is formed. The stability of the equilibrium P0 produces the transformation at β0 = β∗0 . It shows that a
bifurcation may happen at β0 = β∗0 .

Theorem 3.4. The system (3.8) undergoes transcritical bifurcation at the disease-free equilibrium P0, when the bifurcation
parameter β0 is β∗0 .

Proof. When the bifurcation parameter β0 = β∗0 , the matrix

ΣP0 =


−b 0 −

(α + b)(γ + b)
α

0 −(α + b)
(α + b)(γ + b)

α
0 α −(γ + b)


has a geometrically simple zero eigenvalue with right eigenvector Φ =

[
−
(α + b)(γ + b)

αb
γ + b
α

1
]T
and left

eigenvector Ψ =
[
0

α

α + b
1
]
. There is no other eigenvalue on the imaginary axis and

Ψ (Dβ0X1 f )Φ =
α

α + b
6= 0,

Ψ ((DX1X1 f )(Φ,Φ)) = −
2(α + b)(γ + b)2

αb
6= 0.

According to the literature [40], system (3.8) undergoes transcritical bifurcation at the disease-free equilibrium P0. This
completes the proof. �

Remark 5. Note that when β0 = β∗0 , the endemic equilibrium P1 translates the disease-free equilibrium P0. We must
effectively control the transmission rate β0, such that the value β0 is less than β∗0 . It is important to effectively control
the value β0.

We take the isolation control method to reach our aim. Taking isolation control, then the system (3.8) can be written

s′ = b− bs− (β0 − η)si

e′ = (β0 − η)si− (α + b)e

i′ = αe− (γ + b)i
0 = s+ e+ i+ r − 1

(3.9)

where the isolation rate 0 < η < β0.
According to Theorems 3.2–3.4, we know that if β0− η < β∗0 , the system (3.9) is stable at P0; if β0− η > β∗0 , the system

(3.9) is stable at P1. Obviously, when β0−β∗0 < η < β0, the aim of elimination of the disease can be reached, and it is easy to
implement in real life. Nevertheless, the investments in human, material and financial resources are larger as the isolation
rate increases, and it is hard to realize. Therefore, we take the isolation rate η→ β0 − β

∗

0 to achieve our aim.

Remark 6. By enhancing the immunity of the susceptible, quarantining the infectious and decreasing contact between the
infectious and the susceptible, we can obtain the isolation rate η.

3.4. Numerical simulation

In this subsection, numerical examples are used to demonstrate the validity of the controller.
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i(t
)

Fig. 9a. The dynamic response of i(t) trajectory under an uncontrolled system.

Case I. The parameters of system (2.3) are supposed as follows:

b = 0.02, α = 35.84, γ = 100, β0 = 1800, β1 = 0.28.

In this case, the system (2.3) is hyperchaotic. According to Theorem 3.1, we design the controller of controlled system
(3.1)

u(t) =
1

35.84× 1800(1+ 0.28 cos 2π t)i(t)
[−Z(s(t), e(t), i(t))+ υ(t)]

where

Z(s(t), e(t), i(t)) = 64512(1+ 0.28 cos 2π t)i(t)[0.02− 235.92s(t)− 1800(1+ 0.28 cos 2π t)s(t)i(t)]
+ 35.84e(t)[64512(1+ 0.28 cos 2π t)s(t)+ 14873.9396]
− 100.023i(t)− 36126.72πs(t)i(t) sin 2π t,

υ(t) = −c0i(t)− c1[35.84e(t)− 100.02i(t)]
− c2[64512(1+ 0.28 cos 2π t)s(t)i(t)− 4869.9392e(t)+ 100.022i(t)],

choose c0 = 6, c1 = 11, c2 = 6 satisfying all roots of equation p3 + c2p2 + c1p + c0 = 0 lie in the left half plane of p, the
figures of i(t) trajectory with an uncontrolled system and a controlled system are shown in Fig. 9.
From Fig. 9b, we can see easily that the infectious trajectory of system (3.1) tracks an ideal state id(t) = 0 via designing

a tracking controller and it is shown that the disease will gradually disappear.
Case II. The parameters of system (3.8) are supposed as follows:

b = 0.02, α = 35.84, γ = 100, β0 = 180.

By calculating, we get β∗0 = 100.0758. Making a different isolation rate η, the response of i(t) is shown in Fig. 10.
From Fig. 10, we can see that the larger the isolation rate η is, the better the effect of control is, and the smaller the

infection is. When η = 70 < β0−β
∗

0 , the controlled system is stable at the endemic equilibrium. It shows that the endemic
disease forms.When η = 80 > β0−β

∗

0 , number of the infectives gradually becomes zerowith time, i.e. , whenβ0−η→ β∗0 ,
the disease is eliminated ultimately. To avoid forming an endemic disease at certain region, isolation control is an effective
measure. This is also a common method.

4. Conclusions

Bifurcation or chaos dynamical behavior exists in many epidemic models. These dynamical behaviors are generally
deleterious for biologic systems, and often lead to a disease spreading gradually or breaking out suddenly in certain regions.
In other words, many people in the region would be infected by disease and some of them could even lose their lives.
Therefore, it is important to effectively control bifurcation or chaotic dynamical behavior of epidemic models.
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i(t
)

Fig. 9b. The dynamic response of i(t) trajectory under a controlled system.

i(t
)

Fig. 10. The response of i(t) of system (3.9) for a different isolation rate η at initial value (0.579, 0.02, 0.001, 0.4).

In this paper, we study an SEIR epidemic model which is a differential and algebraic system with seasonal forcing in
transmission rate. We consider three cases: only one varying parameter, two varying parameters and three varying param-
eters. For the case of only one varying parameter, we analyze the dynamics of the system by using the bifurcation diagrams,
Lyapunov exponent spectrum diagram and Poincare section. For the cases of two and three varying parameters, a Lapunov
diagram is applied in the analysis of dynamical behaviors. Furthermore, for the hyperchaotic dynamical behavior of the sys-
tem, we design a tracking controller such that the disease gradually disappears. In particular, we discuss the stability and
the transcritical bifurcation for the degree of seasonality β1 = 0. The disease is eliminated by taking isolation control which
is an effective measure. Finally, numerical simulations are given to illuminate the proposed control methods.
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